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Main objectives of the lecture: To show how
computational approaches can lead to
better understanding of the USA Drug
Overdose Epidemic

1. Epidemiology of drug overdose deaths
2. Age structure of the epidemic

Drug and demographic structure

3. Forecasting the epidemic trajectory



Another objective of this lecture:

v Encourage more effective visual display
of epidemiological data and analyses
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The opioid epidemic is a complex, dynamical process, and it should
be approached as such in the development and evaluation of
policy. A coordinated national opioid epidemic modeling program
could help solve this difficult problems
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Changing dynamics of the
drug overdose epidemic in the
United States from 1979 through 2016

Hawre Jalal', Jeanine M. Buchanich?, Mark S. Roberts’, Lauren C. Balmert>*,
Kun Zhang’, Donald S. Burke®*

Better understanding of the dynamics of the current U.S. overdose epidemic may aid in the
development of more effective prevention and control strategies. We analyzed records

of 599,255 deaths from 1979 through 2016 from the National Vital Statistics System in
which accidental drug poisoning was identified as the main cause of death. By examining
all available data on accidental poisoning deaths back to 1979 and showing that the
overall 38-year curve is exponential, we provide evidence that the current wave of opioid
overdose deaths (due to prescription opioids, heroin, and fentanyl) may just be the

latest manifestation of a more fundamental longer-term process. The 38+ year smooth
exponential curve of total U.S. annual accidental drug poisoning deaths is a composite of
multiple distinctive subepidemics of different drugs (primarily prescription opioids,
heroin, methadone, synthetic opioids, cocaine, and methamphetamine), each with its own
specific demographic and geographic characteristics.

Altmetric score 1487
Top 0.0002 of all
research outputs



599,255 accidental drug
poisoning deaths
recorded by the National
Vital Statistics System,
1979-2016
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HOT SPOTS FOR OVERDOSE DEATHS, BY DRUG
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Getis-Ord Gi* statistic adapted using the pooled mean and variance of the mortality rates across drugs and periods. .



Observation set #1

The overall epidemic of overdose deaths has
been growing along a remarkably smooth
exponential trajectory

Paradoxically, the overall epidemic is
composed of multiple sub-epidemics without
obvious structure



President Donald J. Trump
State of the Union Address
4 February 2020

“With unyielding commitment, we are curbing the
opioid epidemic,” Trump said. “Drug overdose deaths
declined for the first time in nearly 30 years .... we will
not quit until we have beaten the opioid epidemic once
and for all.
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SHORT REPORT
Carfentanil and the rise and fall of overdose deaths in the
United States

Hawre Jalal' © & Donald S. Burke®

ABSTRACT
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of rug overdose death in United States from 1979 through 2019 were studied
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INTRODUCTION
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The Real Reason for 2018 Drop in Fatal
U.S. Drug Overdoses

FRIDAY, Sept. 18, 2020 (HealthDay News)

A slight decline in US. drug Latest Mental Health News

overdose deaths in 2018 was Gen X, Millennials in Worse Health Than Prior Gens

due to a drop in supply of a Stressed Brain Has a Role in Broken Heart Syndrome

dangerous opioid from China OCD May Be More Common in New Moms Than Thought

Nature's Sounds Bring Healing
rather than federal

Study Reveals the Power of Fiction on the Mind
government efforts, and was Want More News? Sign Up for MedicineNet Newsletters!
only temporary, a new study

shows.

‘The US. has not bent the
curve on the drug overdose
epidemic,’ said lead author Dr.
Hawre Jalal, an assistant
professor of health policy and
management at the University
of Pittsburgh.

“We are concerned that

policymakers may have

interpreted the one-year
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Fall in Overdose Deaths was confined to states that experienced a spike in carfentanil
deaths, and the trajectory returned to its upward exponential growth pattern
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Epidemic Growth Patterns

By Age and Birth-Year
Cohorts ( Generation )
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https://doi.org/10.1038/541591-020-0855-y

M) Check for updates

Age and generational patterns of overdose death
risk from opioids and other drugs

Hawre Jalal ©®'=, Jeanine M. Buchanich?, David R. Sinclair*3, Mark S. Roberts' and

Donald S. Burke ®4%2

The ongoing substance misuse epidemic in the United States
is complex and dynamic and should be approached as such
in the development and evaluation of policy'. Drug overdose
deaths (largely attributable to opioid misuse) in the United
States have grown exponentially for almost four decades,
but the mechanisms of this growth are poorly understood?.
From analysis of 661,565 overdose deaths from 1999 to
2017, we show that the age-specific drug overdose mortal-
ity curve for each birth-year cohort rises and falls according
to a Gaussian-shaped curve. The ascending portion of each
successive h-year cohort mortality curve is accelerated
compared with that of all preceding birth-year cohorts. This
acceleration can be attributed to either of two distinct pro-
cesses: a stable peak age, with an increasing amplitude of
mortality rate curves from one birth-year cohort to the next; or
a youthward shift in the peak age of the mortality rate curves.
The overdose epidemic emerged and increased in amplitude
among the 1945-1964 cohort (Baby Boomers), shifted youth-
ward among the 1965-1980 cohort (Generation X), and then
resumed the pattern of increasing amplitude in the 1981-1990
Millennials. These shifting age and generational patterns are
likely to be driven by socioeconomic factors and drug avail-
ability, the understanding of which is important for the devel-
opment of effective overdose prevention measures.
The mortality rate for overdose deaths has been growing expo-
ince at least 9 (ref. *); overdose deaths are now a lead-
ing cause of premature deaths in the United States’. In 2017 there
were 192 deaths pe1 ay due to drug overdoses. We apply the term

g overall pattern. By analysis of

overdose mortality patterns according to age at death (age), calen-
dar year (period), and year of birth (cohort) of the decedents’, and
use of novel d isualizati chniques, we reveal predictable pat-
terns that describe the drug overdose epidemic from opioids and
ugs in the United States

al drug poisoning deaths in the United States were

ith the International Cl on of Diseases codesd

ICD-9 and ICD-10 and were extracted from the Mortality Multiple
Cause-of-Death mic files from 1979 to 2017 (https://www.
\xln,\;p ublic u '7d<\m.hlm). S 1

gonal datapoint pixels that are aligned by APC
: ation of the pixels reveals patterns of overdose
mortality rate by age, period, or birth year (Fig. 1b). Overall, the
epidemic has a wedge-shaped pattern with an upper boundary
approximately allgned ong the 1945 birth-year cohort isoline,
and the lower boundary aligned along the 18-year-old age isoline
as shown by the dashed lines. The vast majority of overdose deaths
are constrained within these boundari
This wedge sha r rta attern illustrates the
rth-year cohorts over
time. The upper houndl Y ot lhla wedge pattern, approximately
along the post World W r LOhOlt isoline, revealc
a relatively a
Boomer generation®. Gener
low rates of overdose death 2
cohort isoline upward from left to nght across calendz
it can be seen that the annual mortality rate for that birth-year

cohorl increases as each cohort has aged. This gener;\l pattern of

true for all
signs of slow-
ing in O\EIdObe mortality i ter 2015, especially
among the Baby Boomers with the earliest birth years (1945-
cohorts), as individuals in these cohorts exceed the age of peak
overdose mortalit
The lower overdose epidemic boundary runs approximately
alono the 18- Id age isoline, consistent with the increase in
rs that occurs in adolescence. Prior to 2000, this
: age 30 years, but this age
boundary has since shifted to age 18 y
Bands of high mortality are arrayed xemu\ll) along period (year)
ical bands of high mo do not conform to

strained to apeum time pm iods. One e\ample is the atnong verti-
cal band in deaths in the most recent years 2014-2017;

period effect of high mo 11 affected birth-year
gohmt and age group holmea, and coincides with the surge of

eases in mortality rates with each

ohort, we gn\phic compared the mortality rate tra-

jectories for all birth-year cohorts across their respective lifespans
(Fig. 2). In this ana
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Overdose Death Doubling Times, By Birth Cohorts
(observation period from 1979 to 2016, between ages 20 and 50 y.o0.)
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Approximation of Age-specific Overdose Mortality Trajectories, by Birth Cohort
Fitting to Gaussian Curves
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Changing epidemic curve parameters W (peak age) and a (peak mortality rate) by birth cohort
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Changing epidemic curve parameters W (peak age) and a (peak mortality rate) by birth cohort
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Age, Period, and Cohort (APC) Heat Maps
Using Hexagonal Coordinates
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Letters

Fermat’s Passage

To the Editor:

thahlluy and statistics are essen-
tial to epidemiology, and notoriously

difficult. The rules of probability'? are

concisely summarized in a passage.

describing a game, that Pierre de Fermat

wrote to Blaise Pascal on Friday 25 Sep-
tember 1654.% Here, we explain Fermat’s
passage.

In the first sentence of the passage,
Fermat references a prior letter where
a game of “points™ is described. In this
game, each of k players places the same
monetary stake, and chooses one side of
a balanced k-sided die (for example, two
people can play with a balanced coin). A
player is awarded a point when a roll of
the die shows their side. The first player
with two points wins the pot.

The problem discussed by Fermat
and Pascal is how to fairly distribute the
pot, if the game of points must be stopped
before anyone has won. Fermat describes
the case of k=3 players, who have each
contributed $9, and where in one prior
round the first player won a point. The
last sentence in Fermat’s passage reads
“Here, in a few words, is the whole my
tery, which we believe, because we both
scck only reason and truth.”

is crucial to note that, because the
first player with two points wins, the game
must be finished in three more rounds
or fewer. If the first player wins the next
round, with a chance 1/3, then she wins
the game. If the second or third pl
wins the next round, and the first play
wins the following third round, with a
chance of (2/3)(1/3)=2/9 (because inde-
pendent probabilities multiply), then the
first player wins the game. Finally, if the
second or third player wins the next round,
and the third or second player wins the
subsequent round, and the first player wins

Correspondence: Stephen Cole, Department of
Epidemiology, University of North Carolina,
Chapel Hill NC 27599. E-mail: cole@une.edu

Copyright © 2020 Walters Kluwer Health, Inc. All
rights reserved.

SSN: 1044-3983/2020/3106-¢47

DOI: 10.1097/EDE.00000000000012

the following third round, with chance
2/3(2/3)1/3 — 2/27 = 4/27 — 2/27 = 2/27,
then the first player wins the game. The
accounts for the two cas
ch, where the second or third player
wins the next two rounds, and therefore
the first player loses the game before a
third round is played. The first player wins
the game with probability 1/3+2/9+2/27
=17/27=10.629 629... (because exclusive
probabilities sum). The second and third
players together win the balance of 1 —
7/27 = 10/27 =0.370 370... (because ex-
clusive and exhaustive probabiliti
to one), or 5/27 = 0.185 185..
one argues to divide the pot of $2
ing to the chances of winning, conditional
on the round already played, then the first,
second, and third players receive $17, $5,
ively. Arguments for other
ible, for example, “calling
the bet (each player is returned $9),
or “whoever is ahcad wins” (first player
receives all $27). But without such a rule
in place, before play begins, division (of
the pot) according to conditional chances
ems fairest.

The three rules of probability are
given parenthetically above. There, in the
highly communicable form of a game,
we have the rules of probal ¢ theory,
which provides foundation for statistics,
epidemiology, and reason, if not truths,

Stephen R. Cole
Department of Epidemiology
University of North Carolina

Chapel Hill, NC

cole@unc.edu

Aurelien Latouche

Conservatoire national des arts et metiers
Paris, France

Inserm U900

Institut Curie

nt Cloud, France

Daniel Westreich
Department of Epidemiolo;
University of North Carolina

Chapel Hill, NC
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Hexamaps for
Age-Period-Cohort
Data Visualization and
Implementation in R

To the Editor:

Age—period—cohort (APC) analyses
oftenreveal important insights into patterns
of di ¢ incidence and mortality, such as
cancer. A widely recognized issue in APC
analyses is the identification issue caused
by the inseparability of the linear effects of
cohort, nd period. While anal
solutions are an active area of research,’'
visual displays can be useful tools to re-
veal patterns in these data.® Despite their
potential, to date, there is a lack of APC-
specific visualization tools. For example,
a commonly used display of APC data is
the traditional Lexis diagram (Figure A),
which consists ofasimple two-dimensional
heatmap with a field of colored square tiles

g a quantity of intere: h as
mortality rate. While it is informative, the
main issue with a Lexis diagram is that
the researcher has to make a choice to rep-
resent only two of the three dimensions
(often age and period) on the XY axes,
leaving cohorts to be represented on the
diagonal. This setup introduces substantial
visual distortion in how cohort patterns
are presented relative to age and period.
Specifically, relative to age and period,
this setup compresses patterns between
adjacent cohorts by 30% (1-+v2/2),
while stretches patterns within each co-
hort by 41% (+2 —1) . In addition to these
distortions, tracing cohort patterns is fur-
ther complicated because adjacent square
pixels along any cohort isoline only share
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Visual distortion (right-angle triangular mesh):
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No distortion (equilateral triangular mesh)

C Lexis diagram

a single corner. Together, these distortions
can substantially impede cohort pattern
recognition in Lexis diagrams.

We developed ahexamap asa simple
solution to the limitations of a traditional

e48 | www.epidem.com

D Hexamap

Lexis diagram (Figure B). A hexamap
consists of a field of colored hexagonal
tiles. Hexagons are the preferred shape
for visualizing heatmaps because they are
the most rounded shape that can be tiled

Drug overdose
mortality

1 white men
per 100,000

FIGURE. Hexamaps correcting the
visual distortion in Lexis diagrams.
A, The distortion of cohort isolines
using square tiles in a Lexis dia-
gram; (B) corrects for this visual
distortion using hexagonal tiles. C
and D, Comparing the patterns of
accidental drug overdose deaths
among white men in a traditional
Lexis diagram versus a hexamap,
respectively (A = age ranging from
15 to 70 years, P = period ranging
from 1999 to 2018, C = cohort
ranging from 1929 to 2003).

evenly edge-to-edge.’ A hexagonal grid is
especially powerful for visualizing
data because it places all three APC
at equal 60° angles. Because of this place-
ment, a hexamap overcomes all the visual

© 2020 Wolters Kluwer Health, Inc. All rights reserved.




APC (Age, Period and Cohort) Effects
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Hexamaps: Hexagonal coordinate Age / Period (Year) / Cohort heat maps

Calendar Year — Birth Year

Age

(A) Hexamap illustration (B) Hexamap for overall overdoses
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Having trouble looking at hexagonal APC
heat maps? Here’s how
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APC - Hexagon Heat Maps / Variable Pixel Sizes

Set hexagon pixel size proportional to mortality rate

Use color to convey other information about that pixel eg
male/female ratio

Creates tool to examine how other variables map onto
APC patterns



USA Drug Overdoses 1979 - 2017
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Hexapixel color = demographic ratio
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Changing Demographics of the USA Drug Overdose Epidemic
1979 - present

Male -> Female (especially older)
Black -> White (especially younger)
Urban -> Rural



Drug patterns by Age and Generation

(percentage of deaths from cocaine,

prescription drugs, methadone,
fentanyl, methamphetamine, uns

neroin,
necified

drug, and unspecified narcotic)

K-means clustering of APC hexagon pixels



Birth cohort = 1948 ->

Calendar year = 1999 ->
Age >15vyo
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K-means clustering of APC hexagon pixels

By drug patterns (percentage of deaths from cocaine, prescription drugs, methadeon,
heroin, fentanyl, methamphetamine, unspecified drug, and unspecified narcotic)

Note: Although no data on year, age, nor birth cohort were used
to generate the drug cluster patterns, the derived drug use cluster
patterns nonetheless track along year and birth cohort isolines
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1985 Birth Cohort / Sequential Drug Clusters
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Statistically Defined Wave Structure of the Overdose Epidemic
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Observation set #3

The slowing of the epidemic growth by birth year
cohorts around 1975 also marked a bifurcation in
the epidemic. Drug patterns in overdose deaths
differ between cohorts born before and after 1975



How did the Opioid Overdose Epidemic happen?

Paradox: The overall smooth and predictable
epidemic curve of drug overdose deaths is
composed of heterogeneous sub-epidemic
processes

What forces are holding these sub-epidemics
together ?



Moore’s Law: The number of transistors in a dense
integrated circuit doubles approximately every two years
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How did the Opioid Overdose Epidemic happen?

Advocacy for increased treatment of chronic pain

New higher dose drug formulations aggressively
marketed

Cheap heroin supply introduced

Fentanyl replaced heroin



ROOT CAUSES

IMMEDIATE CAUSES C

How did the Opioid Overdose Epidemic happen?

Advocacy for increased treatment of chronic pain

New higher dose drug formulations aggressively
marketed

Cheap heroin supply introduced

Fentanyl replaced heroin

PUSH PULL
Suppl (Demand)

Lower drug prices  Loss of sense of purpose



Forecast



Forecast 2018-2025
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Agent Based Modeling



& C @ () https//fred.publichealth.pitt.edu/cdc_opioids e © = @ 2

ER_ED//L Software ¥ Simulations ¥ Publications Help ~ Login Register

FRED Simulator for Opioid Use Disorder and Overdose

Application User Guide.

FRED (A Framework for Reconstructing Epidemiological Dynamics) is an agent-based simulation modeling system for exploring the spatial and temporal
patterns of epidemics. In this application, we have incorporated a detailed representation of opioid use disorder (OUD) and overdose into FRED and have
calibrated the model from multiple data sources relevant to each county represented. The disease model of OUD, representing possible disease states at an
individual-level, is described in more detail here. The model currently estimates the impact of two evidence-based strategies for preventing opioid overdose
deaths: 1) the provision of Naloxone, an opioid antidote that can reverse the effects of an opioid overdose, and 2) the availability of office-based
buprenorphine as medication for opioid use disorder (MOUD). These two strategies are part of the HHS 5-point strategy to combat the opioid crisis.

In the current model, increasing the availability of naloxone at a county level decreases the probability that an individual will die from an overdose. Increasing
the number of office-based buprenorphine prescriptions will increase the availability of MOUD, which will increase the probability that a person with OUD will
enter treatment. In the model, individuals in treatment do not experience an overdose unless they relapse.

Please note that because there are multiple pathways among the disease states in the OUD model, a single intervention may impact multiple disease states.
For example, increasing naloxone availability will not only decrease overdose deaths but also increase the number of agents (i.e,, individuals) in the disease
state of OUD and the number of agents receiving MOUD treatment.

Below, you can choose a state/county to simulate the impact of the two interventions considered on OUD prevalence and opioid overdose. The policy sliders,
originally set to baseline levels, can then be used to select a desired level of intervention. The accompanying maps visualize the geographic locations of
individuals with opioid use disorder and overdose deaths. The map on the left predicts the expected number of opioid deaths with the county's current levels
of Naloxone and MOUD available, while the map on the right estimates the expected number of opioid deaths under the combination of Naloxone and
MOUD selected in the policy sliders.

Opioid Overdose and OUD Simulation Model by County

Please select a State... v

Please select a rannty v

61



What is FRED?
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FRED Web (pitt.edu)

63


https://fred.publichealth.pitt.edu/cdc_opioids
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Pennsylvania Nt
Allegheny v
Total Naloxone Doses @ .
Available Annually at 2,150 2,687 3,225 3,762 4,300
County Level (baseline) (+25%) (+50%) (+75%) (+100%)
Annual Office Based (o= St ‘.
Buprenorphine 216,610 270,762 324915 379,067 433,220
Prescriptions (baseline) (+25%) (+50%) (+75%) (+100%)

Pause Simulation Restart Simulation

Opioid Use Disorder & Opioid Overdose Death Opioid Use Disorder & Opioid Overdose Death

Allegheny County, PA Allegheny County, PA
2021-12-15 2021-06-16
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Opioid Use Disorder Overdose Death Opioid Use Disorder Overdose Death
Over the baseline simulation period (2020 through 2024), 25% increase in naloxone and 50% increase in MOUD over the simulation
® 68,324 +/- 79 cases of opioid use disorder (mean +/- S.E.M.) period (2020 through 2024),
e 2,407 +/- 22 overdose deaths (mean +/- S.E.M) e 67,407 +/- 74 cases of opioid use disorder (mean +/- S.EM.) (-1%
change)

FRED Web v3.1.0, © 2019 Public Health Dynamics Laboratory, University of Pittsburgh




Conclusions

The drug overdose epidemic has been following a smooth and
predictable exponential growth trajectory for four decades.

Paradoxically, the epidemic is composed of sub-epidemics that
differ by drug, race, sex, and geography and that do not (thus
far) show predictable patterns.

Age structure analysis shows that the overall epidemic can be
seen as having three major components — the “boomer” start,
the youthward bifurcation, and the recent fentanyl surge.

Forecasts based on historical patterns suggest continued
exponential growth of the epidemic.



Some New Questions

How has the epidemic been held onto an exponential
trajectory for almost four decades?

What accounts for the strong generational effects? Why did the
“Boomer” generation kick of the epidemic? What gave rise to
the generational pre/post 1975 birth year bifurcation in drug
use and mortality patterns?

Do the socio-economic drivers and behavioral dynamics vary in
parallel with drug use and demographic patterns?

Is the national emphasis on prescription drugs addressing the
younger half of the epidemic?



Through the use of computational analytics,
modeling, and visualization, we can gain
understanding the deeper social, economic,
and behavioral drivers of the epidemic.

Increased understanding of these deeper
drivers will lead to a sustainable reduction of
substance use disorders and overdose deaths.
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The Boston Globe

Trying to recover,
Bond decides
best choice is jail
Drug treatment center
won't take her after trial

By Marss Cramer
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